The Quadratic Assignment Problem is easy for Robinsonian Matrices
نویسندگان
چکیده
We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A,B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A Robinson (dis)similarity matrix is a symmetric matrix whose entries (increase) decrease monotonically along rows and columns when moving away from the diagonal, and such matrices arise in the classical seriation problem.
منابع مشابه
The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure
We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A,B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A Robinson (dis)similarity matrix is a symmetric matrix whose entries (increase) decrease monotonically along row...
متن کاملWorkshop on Tractable special cases of hard combinatorial optimization problems
Tractable special cases through linear algebra Gerhard Woeginger, Eindhoven University of Technology, The Netherlands The talk surveys and discusses a number of tractable special cases of the travelling salesman problem and the quadratic assignment problem. As a common theme, the underlying cost matrices can be defined and easily understood through basic linear algebra: they form a cone, or a l...
متن کاملEffective heuristics and meta-heuristics for the quadratic assignment problem with tuned parameters and analytical comparisons
Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and tabu search (TS), simulated annealing, and pa...
متن کاملA New Lower Bound Via Projection for the Quadratic Assignment Problem
New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making eecient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound is easy to implement and often provides high quality bounds under an acceptable computational eeort.
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.2801 شماره
صفحات -
تاریخ انتشار 2014